Maximum Likelihood Identi cation of Wiener Models with a Linear Regression Initialization

نویسنده

  • Anna Hagenblad
چکیده

Technical reports from the Automatic Control group in Linkk oping are available by anonymous ftp at the address ftp.control.isy.liu.se. This report is contained in the compressed postscript le 2051.ps.Z.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Nonparametric Identication and Estimation of Nonclassical Errors-in-Variables Models Without Additional Information

This paper considers identi…cation and estimation of a nonparametric regression model with an unobserved discrete covariate. The sample consists of a dependent variable and a set of covariates, one of which is discrete and arbitrarily correlates with the unobserved covariate. The observed discrete covariate has the same support as the unobserved covariate, and can be interpreted as a proxy or m...

متن کامل

Generalizing Full Rank Conditions in Heteroscedastic Censored Regression Models

Powell's(1984) Censored Least Absolute Deviations (CLAD) estimator for the censored linear regression model has been regarded as a desirable alternative to maximum likelihood estimation methods due to its robustness to conditional heteroscedasticity and distributional misspeci ̄cation of the error term. However, the CLAD estimation procedure has failed in certain empirical applications (e.g. Hon...

متن کامل

Using maximum likelihood linear regression for segment clustering and speaker identification

Many adaptation scenarios rely on clustering of either the test or training data. Although consistency between the clustering and adaptation objective functions is desired, most previous approaches have not implemented such consistency. This paper shows that the statistics used in Maximum Likelihood Linear Regression (MLLR) adaptation are su cient to cluster data with a consistent Maximum Likel...

متن کامل

Estimation and Inference with Weak Identication

This paper analyses the properties of standard estimators, tests, and con…dence sets (CS’s) in a class of models in which the parameters are unidenti…ed or weakly identi…ed in some parts of the parameter space. The paper also introduces a method to make the tests and CS’s robust to such identi…cation problems. The results apply to a class of extremum estimators and corresponding tests and CS’s,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007